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An erodible surface exposed to supercritical flow often devolves into a series of steps
that migrate slowly upstream. Each step delineates a headcut with an associated
hydraulic jump. These steps can form in a bed of cohesive material which, once
eroded, is carried downstream as washload without redeposition. Here the case of
purely erosional, one-dimensional periodic, or cyclic steps in cohesive material is
considered. The St. Venant shallow-water equations combined with a formulation
for sediment erosion are used to construct a complete theory of the erosional case.
The solution allows wavelength, wave height, migration speed and bed and water
surface profiles to be determined as functions of imposed parameters. The analysis
also admits a solution for a solitary step, or single headcut of self-preserving form.

1. Introduction
It has long been known that the initial period of channel incision on a hillslope

swale is often characterized by a series of step-like upstream-migrating headcuts,
or gully heads within the channel (e.g. Leopold & Miller 1956). An example of
such discontinuous headcuts is provided by the Greyfox channel studied by Reid
(1989), shown in figure 1, where 19 gully heads can be discerned. These features
have been observed by many other authors, e.g. Blong (1970) and Montgomery &
Dietrich (1989); a comprehensive literature review is provided by Reid (1989). Figure
1 suggests that discontinuous headcuts are not due to random irregularities, but are
rather an inherent feature of the interaction of water and sediment on steep slopes. It
furthermore suggests that there may be an inherent periodicity, or cyclicity associated
with this interaction which leads to a characteristic wavelength and wave height for
the train of step-like headcuts. These possibilities are pursued in this paper. The
phenomenon itself is referred to herein as cyclic steps.

Even the simplest manifestation of the phenomenon in the field, however, involves
complications that may contribute without being essential. For example, the headcuts
of figure 1 are incised into a grassland hillslope. Those places where the soil surface
is covered with grass are likely to offer more resistance to erosion than those that
are bare. This variation in erodibility may in turn promote the formation of undercut
plunge pools. In addition, while the channels are incisional in the overall sense, some
deposition is often observed downstream of each headcut. The headcuts may respond
differently to flows of different magnitude. Finally, the crescentic planform shape of
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Figure 1. Illustration of the Greyfox channel, an incisional channel in a hillslope swale near Simas
Valley, California, USA showing 19 discontinuous headcuts. From Reid (1989).

each headcut scarp in figure 1 suggests an element of two-dimensionality in the flow
that sculpted it. Here the problem is simplified to its bare essentials by considering a
constant one-dimensional flow over a bed of cohesive material of completely uniform
erodibility. It is assumed that once material is eroded, it immediately breaks down
into a fine-grained washload that is carried out of the reach in question without
redeposition. If it can be shown that cyclic steps form under even these restrictive
conditions, then their origin can be ascribed to an inherent interaction of water with
an erodible bed, rather than to random variation in e.g. erodibility.

Purely erosional cyclic steps have been produced in the laboratory by Sawai (1977)
(see also Ashida & Sawai 1977) and Koyama & Ikeda (1998). Sawai introduced flows
in channels that were initially rectangular and straight with a width of 1 cm. The
channels were cut into a bed consisting of a mixture of bentonite and sand so as to
have steep slopes that were constant in the streamwise direction. The quasi-uniform
flow preceding the evolution of steps was invariably supercritical in the Froude sense.
Within time, the channel bed devolved into a series of steps, each characterized by a
short, extremely steep waterfall-like zone of supercritical flow ending in a hydraulic
jump. In addition, the channels developed an element of planform sinuosity due to
the fact that the sidewalls were erodible. Experimental conditions and results are
summarized in table 1. The longitudinal bed profiles of some of the runs are shown
in figure 2. The data of table 1 will be used later to test the theory developed
here.

More recently Koyama & Ikeda (1998) produced erosional cyclic steps incised into
mildly cohesive crushed rock. The crushed rock was composed predominantly of
silt, but with some material as large as pea gravel. An example of the cyclic steps
produced in their experiments is given in figure 3.

Koyama & Ikeda (1998) point out an analogy between erosional steps in cohesive
material and sequences of steps incised into steep bedrock channels. An example of
these bedrock steps is given in figure 4. Although the mechanism for bedrock incision
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Figure 2. Experimental realization of erosional cyclic steps. From Sawai (1977). The initial slope
is denoted i0, the water discharge Q, the initial slope angle θ and time t.

is often rather different from the mechanism for the erosion of cohesive material, it is
highly likely that the fundamental flow instability that leads to step formation is the
same in both cases.

Cyclic steps form in other contexts as well. Winterwerp et al. (1992) have observed
essentially the same topography in the case of flow over a relatively steep bed of
fine non-cohesive sediment. The observed morphology appears to be related to the
chute-and-pool topography described by Simons, Richardsonk & Nordin (1965). In
this case there need be no net erosion of the bed. The experiments of Winterwerp
et al. (1992) indicate that they can form even when the step-averaged rate of sediment
transport is constant in the downstream direction, so that the average rate of bed
erosion is zero. These steps are here termed transportational cyclic steps, in order to
distinguish them from the purely erosional cyclic steps considered below.

Here the case of a fully developed train of finite-amplitude erosional cyclic steps
of permanent form is considered. That is, the waveform is assumed to incise and
migrate upstream at constant slow rates, while otherwise maintaining a constant
topographic expression. The origin of such steps is sought in terms of the purely
erosional analogy of the instability known to be responsible for antidunes in the
non-cohesive, transportational case.

It is demonstrated in the analysis below that steady, uniform (normal) Froude-
super-critical flow over an erodible cohesive bed is inherently unstable under a broad
range of conditions. The flow and bed morphology instead devolve into a series of
steps that slowly migrate upstream, each delineated by a hydraulic jump. The form
of the problem allows for spatially periodic (cyclic) steps that incise and migrate
upstream at constant speeds. The analysis is carried to a fully nonlinear level. It is,
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Longitudinal Meander
Water Water

supplying surface Maximum Wave- Wave Wave-
Inclination, Discharge time width depth length height length Width

Run sin θ (cm3 s−1) (h) (cm) (cm) (cm) (cm) (cm) (cm)

1 0.225 5 3.0 1.3 0.32 8.9 0.93 17.2 0.8
2 0.225 9 3.0 1.2 0.32 6.3 0.97 17.4 1.0
3 0.225 20 2.0 2.2 0.63 5.5 1.15 62.9 0.7
4 0.438 2 3.5 0.9 0.27 3.6 0.34 13.5 1.2
5 0.438 5 2.0 1.3 0.34 4.4 0.79 7.8 2.0
6 0.438 10 1.5 1.7 0.36 4.7 0.96 11.9 1.0
7 0.707 1 0.3 not measured
8 0.707 2 1.75 0.8 0.21 4.2 0.58 12.7 0.7
9 0.707 5 1.25 1.2 0.35 2.6 0.58 11.9 1.1

10 0.545 10 0.33 1.3 0.39 6.3 2.14 11.8 2.1
11 0.555 40 8.0 3.0 1.2 15 6 15 2.5
12 0.196 10 50.0 1.5 0.56 14 1 11 4.0

Table 1. Experimental conditions and results of Sawai’s experiments. Note that the wave height in
this table does not correspond to the parameter ∆ηd in the analysis, but is instead measured normal
to the average slope of the bed. In the case of Run 7, measurement was not conducted because
channel deposition was observed.

Figure 3. View of experimental cyclic steps produced by Koyama & Ikeda (1998). The width of
the channel is approximately 5 cm; the average slope angle is 6◦.
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Figure 4. Bedrock steps in a tributary of the Jin River, China.
The photo is courtesy of E. Kirby.

however, inadequate to describe the formation of plunge pools just downstream of
the hydraulic jump.

2. Governing equations
One-dimensional erosional steps are analysed in terms of the St. Venant shallow

water equations for momentum and mass balance and the Exner equation for the
conservation of bed sediment. The incision rate and migration speed of the steps
are assumed to be sufficiently slow to allow for the use of the standard quasi-steady
approximation for erodible-bed flow. The balance equations are thus expressed in the
following form:

ud
∂ud

∂xd
= −g ∂hd

∂xd
− g ∂ηd

∂xd
− τb

ρhd
, (2.1)

udhd = qw, (2.2)(
1− λp) ∂ηd

∂td
= −E. (2.3)

Here hd, ud, ηd, td and xd denote flow depth, depth-averaged velocity, bed elevation,
time and horizontal downstream distance respectively; the subscript d indicates a
dimensional parameter that will later be represented in dimensionless form with
the subscript removed. The parameters qw , λp, τb, ρ and g denote water discharge
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per unit width, bed porosity, boundary shear stress, fluid density and gravitational
acceleration. In addition E denotes the volume rate per unit bed area per unit time
of the entrainment of sediment into suspension via bed erosion.

The implications and limitations of the above equations must be understood before
proceeding. In (2.3) it is implicitly assumed that (a) the bed material itself is of
uniform erodibility and (b) once eroded, the sediment is carried as washload and not
redeposited farther downstream. The implication is that the flow never reaches its
capacity for carrying sediment within the solution domain. This assumption places
limits on the length of the solution domain, because the concentration of suspended
sediment cannot rise indefinitely.

The above equations further implicitly assume that (c) the suspension is sufficiently
dilute to allow the neglect of any effects it might have on the flow dynamics, (d ) local
bed curvature is not so high that a non-hydrostatic contribution to the pressure term
becomes important and (e) local bed slopes are not too high.

Assumptions (c) and (d ) are not overly restrictive. It will be seen, however, that
the bed slope of a profile with cyclic steps can in some cases become quite high just
upstream of the hydraulic jump. The formulation of (2.1)–(2.3) can be said to retain
dynamic nonlinearities, but to neglect the geometric nonlinearities associated with
high bed slope. This simplification, herein termed the infinitesimal-slope formulation,
allows a compact theory that is valid over a wide range of conditions. It will be shown
later, however, that the inclusion of geometric nonlinearities allows the delineation of
an upper bound in friction coefficient on cyclic step formation.

Implicit in the St. Venant equations is the assumption that the phenomenon
is ‘slender’ in some sense. In particular, where Ld denotes the (dimensional) step
wavelength and h̃ is a characteristic flow depth, it is necessary that h̃/Ld � 1. For
most cases of interest cyclic steps will be found to satisfy this condition. As outlined
below, however, cyclic steps are closely tied to antidunes, and in fact represent
a nonlinear finite-amplitude limiting case. This notwithstanding, antidunes do not
always devolve into cyclic steps. This is probably at least partially due to the fact that
antidunes are known to form under conditions for which the shallow-water equations
do not hold. This issue is elaborated below.

The slender-flow assumption allows the following relation between boundary shear
stress τb and flow velocity:

τb = ρCfu
2
d, (2.4)

where Cf denotes a dimensionless friction coefficient here approximated as con-
stant for simplicity. The following general form is employed to describe the rate of
entrainment of bed sediment into suspension:

E = E(τb − τth), (2.5)

where τth denotes a threshold boundary shear stress for the onset of bed erosion.

3. Theoretical development
3.1. Relation for erosion

Many empirical laws for the erosion of cohesive sediment are found to have the
following form:

E =

{
α1(τb − τth)γ, τb > τth
0, τb 6 τth,

(3.1)
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Figure 5. Definition diagram for bed erosion in the absence of steps.

where the coefficient α1 and exponent γ are obtained from tests (e.g. Foster & Meyer
1975). Both are assumed to be positive on physical grounds. Perhaps the most
common value of γ found in the literature is 1.0 (e.g. Sheng & Lick 1978; Ariathurai
& Arunalandan 1978; Teisson et al. 1993; and Howard 1994). Higher values have
also commonly been found. For example, Otsubo & Muraoka (1982) report a value
of 2.0 for a wide variety of conditions, Umita et al. (1988) report values between
1.9 and 2.3 for the early stages of erosion, and Johaneson, Larsen & Petersen (1994)
report a value of 4.0. The precise value of the exponent appears to be a function of
the ‘toughness’, or resistance to erosion of the material (Croad 1981). Here the range
γ > 1 is selected for investigation. Defining a threshold flow velocity ut such that

τth = ρCfu
2
t , (3.2)

(3.1) can be reduced to the following form for ud > ut:

E = α1τ
γ
th

(
τb

τth
− 1

)γ
≡ α

(
u2
d

u2
t

− 1

)γ
, (3.3)

where α now has the dimensions of velocity.

3.2. Equilibrium flow in the absence of steps

Before proceeding to an analysis of steps, it is necessary to consider the solution in
their absence. To this end a steady, uniform (normal) flow with discharge per unit
width qw over a slowly eroding bed with constant slope S is illustrated in figure 5.
Under these conditions (2.1) and (2.2) reduce to

CfFr
2
n = S, Fr2

n =
u3
nd

gqw
. (3.4a, b)

Here Frn and und denote the Froude number and flow velocity associated with this
normal flow. Note that for given friction coefficient Cf , if qw and Frn are specified
then S and und can be computed. If und > ut, then the bed is degrading in response to
erosion. Denoting the rate of vertical bed degradation in the absence of steps as wnd,
(2.3) can be reduced with (3.3) to yield

wnd =
α

1− λp
(
u2
nd

u2
t

− 1

)γ
. (3.5a)

It will later prove useful to have a dimensionless version of (3.5a). To this end a
dimensionless rate of bed degradation in the absence of steps wn is given as follows:

wn ≡ (1− λp)wnd
α

=

(
u2
nd

u2
t

− 1

)γ
. (3.5b)
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Figure 6. Definition diagram for bed erosion in the presence of steps.

As shown in figure 5, a constant rate of upstream migration of the bed profile in
the absence of steps cnd can be defined such that

wnd = cndS . (3.6)

Any given normal flow with discharge per unit width qw over an eroding bed with
slope S can be compared to another normal flow with the same value of qw over a
lower slope St corresponding to the threshold for erosion. From (2.1) and (2.2), St can
be found from the following relations:

St = CfFr2
t , Fr2

t =
u3
t

gqw
, (3.7a, b)

where Fr t denotes the Froude number at the threshold of motion. Between (3.4a, b)
and (3.7a, b) it is seen that

und

ut
=

(
Frn
Fr t

)2/3

= S1/3
r , Sr =

S

St
. (3.8a, b)

These allow the recasting of the relation (3.5b) for bed erosion in the following form;

wn =
(
S2/3
r − 1

)γ
. (3.9)

The following definition for dimensionless wave speed cn in the absence of steps will
prove useful below:

cn ≡ (1− λp)St
α

cnd. (3.10)

Among (3.5b), (3.6), (3.8b) and (3.10) it is seen that

wn = cnSr. (3.11)

3.3. Cyclic erosional steps of permanent form

The case of erosional steps is now considered. As outlined in the Introduction, periodic
solutions of permanent form migrating upstream with constant wave velocity are
sought. The case of interest is illustrated in figure 6, which describes a stepped bed
migrating upstream with wave speed csd, with an additional rate of degradation wad.
That is,

ηd(xd, td) = ηwd(xd + csdtd)− wadtd. (3.12)

It is further assumed that other than this upstream migration and vertical degradation,
both at constant rates, neither the bed profile nor the flow changes in time. In general
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it is expected that csd 6= cnd. In addition, it is important to realize that wad is not
the total mean degradation rate: another component is realized as the waveform ηwd
migrates upstream at speed csd, as explained below. The steps have wavelength Ld
and wave height ∆ηd, where

∆ηd = ηwd (xd)− ηwd (xd + Ld) . (3.13)

In the case of erosional cyclic steps the lack of deposition to balance erosion
implies that the mean bed slope S is not determined by the interaction of the flow
and sediment, but is rather an antecedent parameter, i.e. equal to the slope S originally
prevailing in the absence of steps. Here the Froude number in the absence of steps
Frn is used as a surrogate parameter for S , which can then be computed from (3.4a)
once the friction coefficient Cf is specified. As seen from figure 6,

S =
∆ηd
Ld

. (3.14)

The total mean rate of vertical bed degradation wsd in the presence of steps can be
determined by averaging (2.3) over one wavelength:

wsd = −∂ηd
∂td

=
E

1− λp , (3.15)

where the overbar denotes averaging over one wavelength, e.g.

E =
1

Ld

∫ xd+Ld

xd

E dxd. (3.16)

Again it is expected that wsd 6= wnd. Substituting (3.12) into (2.3) and reducing, it is
found that

−wad + csd
dηwd
dx̃d

= − E

1− λp , (3.17)

where
x̃d = xd + csdtd. (3.18)

Averaging over one wavelength and invoking (3.13)–(3.15) it is found that

wsd = csdS + wad. (3.19)

That is, the total vertical degradation rate is composed of a component csdS realized
in analogy to (3.6) as the waveform sweeps upstream, and an additional component
wad which is independent of wave migration. Here wad may take negative values as
long as the total degradation rate wsd is positive.

In the following analysis the problem will be solved in a spatial coordinate that is
moving upstream with constant speed csd, i.e. the coordinate x̃d. The tilde is, however,
dropped for convenience. Noting that (2.1) is independent of time and therefore
invariant to the transformation (3.18), it may be reduced with (2.4) to yield the
following ordinary differential equation in the moving coordinate system:

ud
dud
dxd

= −g dhd
dxd
− gdηwd

dxd
− Cf u

2
d

hd
. (3.20)

The dimensionless variables u, h, η and x are introduced at this point in accordance
with the following definitions:

ud = utu, hd =
qw

ut
h, ηwd =

qw

ut
η, xd =

qw

utSt
x. (3.21a–d)
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Figure 7. Close-up of a single step, showing subcritical and supercritical regimes of flow, the point
x = x1 dividing the two regimes and the dimensionless step steepness s = η1/Lf .

Note that the parameter St has been absorbed into the dimensionless length x, but
has not been absorbed into η and h. This has the convenient effect of collapsing the
equations into a universal form that is independent of the precise value of St. It will
be found that such a collapse is no longer possible when geometric nonlinearities
become important. Reducing (3.20) with the aid of (2.2), and (3.17) with aid of (3.3),
the governing equations reduce to

(Fr2
t u− u−2)

du

dx
= −dη

dx
− u3, (3.22)

c
dη

dx
= wa − (u2 − 1)γ, (3.23)

where the dimensionless wave speed c and additional rate of degradation wa are given
by

c = (1− λp)St csd
α
, wa = (1− λp)wad

α
. (3.24a, b)

Eliminating η from (3.22) and (3.23) results in the nonlinear ordinary differential
equation

du

dx
=
c−1[(u2 − 1)γ − wa]− u3

Fr2
t u− u−2

. (3.25)

Further progress requires the specification of boundary conditions. For simplicity
the origin of the moving coordinate system is taken to be just downstream of a jump,
and the bed elevation just beyond the next jump downstream is taken to be zero, as
illustrated in figure 7. Reducing with (3.13), this results in the conditions

η|x=0 = ∆η, η|x=L = 0, (3.26a, b)

where in accordance with (3.21c, d)

∆η =
ut

qw
∆ηd, L =

utSt

qw
Ld. (3.27a, b)

The use of the threshold velocity as the scaling in the non-dimensionalization of
(3.21a–d ) is motivated by the following consideration. In any shallow-water treatment
hydraulic jumps are manifested as shocks. In point of fact, however, they have internal
structure. The effect of the hydraulic jump is to dissipate energy over a relatively
short zone, within which the St. Venant equations do not apply. If by the end of this
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relaxation zone the flow velocity has not been reduced to the threshold value for bed
erosion, it is reasonable to assume that bed erosion would continue until the threshold
value is achieved. In dimensional terms, this implies that ud should equal ut just after
the relaxation zone. Since in the present analysis the relaxation zone is treated as a
shock with vanishing extent, the resulting dimensionless boundary condition on u is

u|x=0 = 1. (3.28a)

Just before the next jump downstream, the velocity must be equal to the conjugate
value of the velocity at x = 0, resulting in the additional boundary condition

u|x=L =

[
(1 + 8Fr2

t )
1/2 − 1

2

]−1

. (3.28b)

Once (3.25) has been solved, (3.23) may be integrated in accordance with (3.26a, b)
to yield

η(x) =
1

c

∫ L

x

[
(u2 − 1)γ − wa] dx, ∆η =

1

c

∫ L

0

[
(u2 − 1)γ − wa] dx. (3.29a, b)

It is seen from (3.27a, b) that

∆η

L
=

1

St

∆ηd
∆Ld

. (3.29c)

An equivalent average normal flow in the presence of steps can be delineated according
to which (3.4a) holds with the further specifications

S =
∆η

L
, Fr2

n =
u3
ed

gqw
. (3.30a, b)

In the above relations S denotes the mean slope averaged over the steps and ued
denotes the equivalent normal flow velocity satisfying (3.4a). In so far as mean bed
slope is taken to be an imposed parameter that cannot be changed by the presence of
steps, a comparison of (3.4) and (3.30) ensures that ued = und. That is, the equivalent
normal flow velocity in the presence of steps must be identical to that which would
prevail in their absence. The average rate of erosion of the bed in the presence of
steps will in general be different from that prevailing in their absence, however, as
noted below.

Equation (3.29b) can be reduced with the aid of (3.29c), (3.30) and (3.7a) to yield
the following constraint for wa:

wa = (u2 − 1)γ − cFr2
n

Fr2
t

. (3.31)

This relation is a dimensionless version of (3.19).

4. Character of the boundary value problem
The first-order ordinary differential equation (3.25) for flow velocity u together

with the two boundary conditions (3.28a, b) and the integral constraint (3.31) presents
an interesting system. The friction coefficient Cf must be prescribed as a global
parameter. For each set of specified values of threshold velocity for bed erosion ut,
water discharge per unit width qw and bed slope S , the parameters Fr t and Frn
are specified as well. These two Froude numbers are taken as the basic specified
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parameters in the present dimensionless formulation. The unknowns are the function
u = u(x) and the parameters c, L and wa. The two boundary conditions and the
integral constraint allow, at least in principle, for a determination of the function u(x)
and two of the parameters. It would appear, then, that a constraint is missing for a
complete solution.

The extra constraint can be obtained by considering the flow field of figure 7.
Based on the assumed existence of a hydraulic jump, the upstream portion of the
flow regime must be subcritical and the downstream portion supercritical. It follows
that there must exist a point x1 ∈ (0, L) such that the Froude number Fr defined by
the relation

Fr2 ≡ u3
d

gqw
= Fr2

t u
3 (4.1)

equals unity. Defining u1 ≡ u at x = x1, it is seen that the Froude-critical condition is
attained when

u = u1 ≡ Fr
−2/3
t . (4.2)

At this value of u, however, the denominator of the right-hand side of (3.25) vanishes,
resulting in an apparent singularity in du/dx. If such a singularity were to occur it
would render the solution of the problem impossible. A necessary condition to avoid
the singularity is, then, that the numerator of (3.25) must vanish as well. This results
in an extra compatibility constraint:

c =
(u2

1 − 1)γ − wa
u3

1

. (4.3)

It is seen from the above equation and (4.2) that for the physically admissible case
γ > 0, c is positive as long as Fr t < 1 and the following constraint is satisfied:

wa < (u2
1 − 1)γ = (Fr

−4/3
t − 1)γ. (4.4)

This justifies the restriction of Fr t to subcritical values. For a given value of wa wave
speed c is seen to increase as Fr t → 0 under the constraint γ > 1.5. This is consistent
with a wave speed that increases in proportion to the intensity of the hydraulic jump.

The specification of (4.3) in itself does not allow solution of the problem. Equation
(3.25) now takes the indeterminate form du/dx = 0/0 at x = x1. An application of
L’Hopital’s rule allows the following evaluation:

du

dx

∣∣∣∣
x1

= u5
1

[
2

3
γ
u2

1(u
2
1 − 1)γ−1

(u2
1 − 1)γ − wa − 1

]
. (4.5)

In order to obtain the physically realistic case of a flow that is accelerating from
subcritical to supercritical at x = x1, it is necessary that du/dx|x1

be positive. The
conditions under which this constraint is satisfied are fairly broad, and include (4.4).
They are analysed in more detail below.

5. Numerical solution and results for cyclic steps
The numerical solution of (3.25) and its constraints (3.28) and (3.31) now becomes

rather simple. Specifying Frn and computing wa from (3.31) would require an iterative
scheme. This is avoided by taking the equivalent but inverse step of specifying wa
and computing Frn from (3.31). Equation (3.25) is transformed into a streamwise
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coordinate xs defined to have its origin at the point where critical flow is reached:

xs = x− x1. (5.1)

Using (4.2) and (4.5) to start the integration, (3.25) is integrated in the upstream (−xs)
direction until the point xs = −Lb is reached at which (3.28a) is satisfied. Again using
(4.2) and (4.5) to start the integration, (3.25) is integrated downstream until the point
xs = La is reached at which (3.28b) is satisfied. The wavelength L is thus given as

L = Lb + La. (5.2)

The bed profile and wave height are then obtained from (3.29a, b).
The integration of (3.25) was carried out using a fourth-order Runge–Kutta scheme.

An adaptive scheme was used to shorten the step length in the zone of high velocity
just upstream of the hydraulic jump. Equation (3.29a) was integrated using the
trapezoidal rule.

In performing the numerical analysis the parameter wa may not be selected arbi-
trarily. It is, rather, subject to an upper bound wau and a lower bound wal . The upper
bound arises from a consideration of (4.5), where it is seen that du/dx|x1

becomes
infinite as wa approaches (u2

1−1)γ from below. Even larger values of wa yield negative
values of du/dx|x1

, which are physically unrealistic in that they imply transition from
supercritical to subcritical flow in the downstream direction at the point where the
Froude number Fr equals unity. It follows that

wau = (u2
1 − 1)γ (5.3)

constitutes an upper bound. It is furthermore apparent from (4.3) that the wave speed
c vanishes at this bound.

The lower bound is somewhat less obvious. It consists of the constraint

wal = −c. (5.4)

The above relation reduces with (4.3) to the form

c = −wa =
(u2

1 − 1)γ

u3
1 − 1

. (5.5)

A comparison of (4.3), (5.3) and (5.4) indicates that for any given value of Fr t < 1
(and thus u1) c takes its maximum value at the lower limit of wa, and its minimum
value of zero at the upper limit of wa. The lower bound can be demonstrated by
substituting the relation

wa = −c(1 + ε) (5.6)

into (3.23) and (3.25) and evaluating both at x = 0 in accordance with (3.28a). Here
ε is a small parameter which when positive ensures that wa is below the limit (5.4).
The result is

dη

dx

∣∣∣∣
x=0

= −(1 + ε), (5.7)

du

dx

∣∣∣∣
x=0

= − ε

1− Fr2
t

. (5.8)

In the original parameters of the problem before non-dimensionalizing, (5.7) implies a
bed slope at xd = 0 that is equal to St when wa =−c, and larger than this when wa < −c.
According to (3.28a), ud must be equal to ut at this point. A consideration of the
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Figure 8. (a) Lower limit wal on wa and (b) upper limit wau on wa as a function of Fr t for the
cases γ = 1.5 and γ = 2.

physically realistic case of flow that is monotonically accelerating in the downstream
direction, however, reveals that an M2 backwater curve computed upstream from the
point where Fr = 1 cannot reach the condition ud = ut at a point where the bed slope
is still in excess of St. This conclusion is in accordance with (5.8), which indicates that
the flow must be decelerating rather than accelerating in the downstream direction at
the point x = 0 when wa < −c.

It can be shown from the above analysis and a consideration of (4.5) that the
constraint du/dx|x1

> 0 is satisfied for all values Fr t ∈ (0, 1) and wa ∈ [wal, wau] as
long as γ > 1.5. The constraint is also satisfied for γ < 1.5 over a more restricted
range of parameters, such that wa must exceed wal .

The limits (5.3) and (5.5) are plotted as a function of threshold Froude number
Fr t in figure 8 for the two cases γ = 1.5 and γ = 2 in the erosion relation (3.3). As
will be seen below, the wavelength L and normal Froude number Frn associated with
erosional cyclic steps approach the limits 0 and ∞, respectively at the upper limit
wau and the corresponding respective limits ∞ and Fr t at the lower limit wal . The
solution domain (Fr t,Frn) for cyclic steps for the case γ > 1.5 is thus illustrated in
figure 9(a). The lower limit is more than a simple mathematical constraint. It will be
shown below to have the physical significance of an upstream-migrating solitary step
of permanent form.

In the case γ < 1.5 the solution domain on the (Fr t,Frn)-plane is restricted. This is
illustrated in figure 9(b) for the cases γ = 1.3 and 1.0.

In figure 10(a–c) the computed wave speed c, additional degradation rate wa,
wavelength L and wave height ∆η are plotted against Frn for the respective values of
Fr t of 0.2, 0.4 and 0.6, assuming the value of the exponent γ in the erosion relation
to be 1.5. Also shown on the diagrams is the step sharpness s, which is here defined
to be given by the relation

s =
η1

Lf
. (5.9)

Here η1 denotes the value of η at x = x1, i.e. where the Froude number attains unity,
and Lf denotes the contribution to wavelength L from the part of the waveform
downstream of x= x1, i.e. the regime of supercritical flow, as illustrated in figure
7. The same figure illustrates the interpretation of s as a mean bed slope over the
domain extending from the point where the Froude-critical condition is reached to
the next hydraulic jump downstream. It is, however, a distorted slope consisting of
the ratio of a numerator that has been made dimensionless with the length scale qw/ut
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Figure 9. (a) Frn,Fr t solution domains for cyclic and solitary steps for γ > 1.5. (b) Modified
solution domains for the cases γ = 1.3 and 1.0.

according to (3.21c), and a denominator which has been made dimensionless with the
different length scale qw/utSt in accordance with (3.21d). The distortion factor is thus
1/St. The undistorted sharpness sd (also dimensionless) obtained from the ratio of the
two dimensional parameters η1d = (qw/ut)η1 and Lfd = (qw/utSt)Lf , i.e.

sd = Sts (5.10)

gives an undistorted mean bed slope over the above-defined domain, i.e. the down-
stream portion of the step.

Figure 10(a–c) indicates that at a set threshold Froude number Fr t, as Frn increases,
and thus S increases relative to St in accordance with (3.8), c, L and ∆η decrease
monotonically and wa and s increase monotonically. At constant Fr t, then, larger
imposed slopes are thus associated with sharper steps, each with a lower wavelength
and wave height, and with a reduced upstream migration speed but increased vertical
erosion rate. As indicated by the tendencies in the figures, calculations verify that L
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Figure 10. Parameters for cyclic steps as functions of Frn for the cases (a) Fr t = 0.2,
(b) Fr t = 0.4, (c) Fr t = 0.6; γ = 1.5.

approaches ∞ as Frn approaches its lower limit of Fr t associated with wa = wal , and
approaches 0 as Frn approaches its upper limit of ∞ associated with wa = wau.

A similar analysis can be performed by holding Frn constant and varying Fr t. As
seen from (3.7b), increasing Fr t corresponds to increasing the threshold flow velocity
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Fr t γ Frn wa c L ∆η s w cr wr

0.2 1.5 1.191 −0.60 0.854 0.786 27.84 313 29.7 0.988 0.968
0.2 1.5 1.463 0 0.830 0.426 22.81 331 44.4 0.926 0.926
0.2 1.5 2.369 8.00 0.510 0.047 6.55 575 79.6 0.540 0.600
0.2 2.0 1.191 4.90 2.048 0.123 4.37 543 78.8 0.770 0.821
0.2 2.0 1.463 10.29 1.868 0.075 4.03 638 110.2 0.574 0.633
0.2 2.0 2.369 28.28 1.149 0.024 3.34 1177 188.2 0.238 0.280

0.4 1.5 0.912 −0.60 0.688 0.973 5.059 23.2 2.98 1.264 1.052
0.4 1.5 1.142 0 0.593 0.346 2.815 26.8 4.83 0.907 0.907
0.4 1.5 1.559 2.00 0.272 0.061 0.919 53.2 6.13 0.356 0.528
0.4 2.0 0.912 −0.295 0.963 0.281 1.460 36.3 4.71 1.251 1.118
0.4 2.0 1.142 1.07 0.745 0.124 1.010 47.4 7.14 0.653 0.768
0.4 2.0 1.559 3.18 0.407 0.043 0.658 86.2 9.36 0.235 0.355

0.6 1.5 0.881 −0.50 0.527 0.953 2.056 5.77 0.636 2.074 1.162
0.6 1.5 1.054 0 0.347 0.201 0.622 7.56 1.071 0.904 0.904
0.6 1.5 1.206 0.50 0.167 0.061 0.247 12.9 1.175 0.355 0.618
0.6 2.0 0.881 −0.368 0.475 0.344 0.742 7.90 0.656 2.291 1.468
0.6 2.0 1.054 0.176 0.280 0.099 0.304 11.95 1.040 0.688 0.829
0.6 2.0 1.206 0.501 0.163 0.045 0.184 18.89 1.159 0.278 0.490

Table 2. Some characteristic parameters of cyclic steps for the cases Fr t = 0.2, 0.4, 0.6
and γ = 1.5, 2.0.

ut or decreasing the water discharge per unit width qw . Over the domain of calculation
of figure 10(a–c), c, L and ∆η again decrease monotonically and wa again increases
monotonically. The steepness s, however, decreases in Fr t. This implies that for a
given slope S , and water discharge per unit width qw , increased values of the critical
velocity ut correspond to more gentle steps, each with a lowered migration speed,
wavelength and wave height. It is apparent from the above that the sharpest steps
are associated with low values of Fr t, which cause stronger hydraulic jumps, and high
values of Frn, which cause higher rates of erosion. This latter aspect can be quantified
in terms of a dimensionless total degradation rate w in the presence of steps, where
in analogy to (3.24b)

w = (1− λp)wsd
α
. (5.11)

Reducing (3.31) with (3.19), (3.24) and (5.11), it is found that

w = c
Fr2

n

Fr2
t

+ wa. (5.12)

The value of w is found to increase with increasing Frn. This can be readily seen from
table 2, which is explained in more detail below.

In order to obtain a view of the variation of step shape with the parameters Fr t,
and Frn for the case γ = 1.5, a total of nine cases were considered, as shown in
table 2. Three calculations were performed at each of the threshold Froude numbers
Fr t of 0.2, 0.4 and 0.6. For each Froude number calculations were performed using
a negative value of wa, wa = 0 and a positive value of wa. The respective cases are
marked on figure 10(a–c) as A, B and C. The resulting dimensionless bed and water
surface profiles are shown in figure 11(a–i ). Dimensional water surface elevation ξd
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is given by the relation

ξd = ηd + hd = ηd +
qw

ud
. (5.13a)

The corresponding dimensionless form is

ξ =
ut

qw
ξd = η + u−1. (5.13b)

As mentioned above, the differing non-dimensionalizations associated with (3.21c)
and (3.21d) imply that plots of η and ξ versus x have an inherent distortion. In order
to remove the effect of this distortion from the plots, η and ξ have been plotted versus
the dimensionless distance x̂, where

x̂ =
x

St
=
ut

qw
xd. (5.14)

The values of x̂ used in the plots were computed for the case Cf = 0.04, yielding
values of St of 0.0016. 0.0064 and 0.0144 for the respective cases Fr t = 0.2, 0.4 and
0.6 according to (3.7a).

In figure 11(a–i ), the plotted vertical scale was distorted by a factor of approximately
2 for clarity. The point on the bed at which Froude-critical conditions are reached is
marked on each plot. As expected, the sharpest step is realized for the smallest value
of Fr t and the largest value of Frn. The three cases for which wa = 0 correspond to a
bed slope that is vanishing at the upstream end. This implies pure wave translation
without any additional degradation. The three cases corresponding to negative values
of wa have positive bed slopes at the upstream end; here the degradation associated
with pure wave translation is ameliorated by the negative value of wa. The three cases
corresponding to positive values of wa have adverse bed slopes at the upstream end.
As illustrated in figure 12, the highest adverse bed slope that can be preserved as
the bed degrades is given by the dimensional condition wad = −Slcsd, where Sl(< 0)
denotes a local adverse bed slope. This criterion takes the dimensionless form

−Slr ≡ −Sl
St

=
dη

dx
=
wa

c
. (5.15)

It is immediately seen from (3.23), (3.25) and (3.28a) that the local adverse bed slope
of the highest magnitude that can be realized is at the upstream end, where

dη

dx

∣∣∣∣
x=0

=
wa

c
. (5.16)

Between (5.15) and (5.16), then, it is seen that the criterion for preservation of an
adverse slope is inherently satisfied by the solution.

Also shown in table 2 are the results of similar calculations for the case γ = 2 in
the erosion relation (3.3). In order to allow a direct comparison, the calculations for
the case γ = 2 correspond the same values of (Fr t,Frn) as those for the case γ = 1.5.
As a result, the values of wa differ between the two cases. For the same values of
(Fr t,Frn), an increased erosion exponent is seen to result in higher values of wa and
s, and lower values of L and ∆η. The values of c are increased for the cases Fr t = 0.2

Figure 11. Bed (η, solid line) and water surface (ξ, dashed line) profiles of a single cyclic step for
γ = 1.5 and the indicated values of Fr t and Frn. The dot on the bed denotes the point at which a
Froude number of unity is attained.
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Figure 12. Condition for the preservation of adverse slope.
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Figure 13. Diagram showing the conditions under which a solitary step migrates upstream
without changing form.

and 0.4, but decreased for the case Fr t = 0.6. An increase in γ from 1.5 to 2 thus
yields steps that are shorter and lower, but steeper over the range investigated.

6. The solitary step
The above theory for cyclic steps allows a solution for a self-preserving solitary

step of permanent form as a limiting case. On physical grounds, the conditions for
the existence of such a step are illustrated in figure 13. The bed slope immediately
downstream of the step must be St, and this value must be continued infinitely far
downstream. This corresponds to a value of dη/dx of −1. Likewise, the bed slope
converges to the value St far upstream. In order that the form be preserved as it
migrates upstream with speed csd, the additional bed degradation rate wad must be
negative, and precisely equal to Stcsd. In dimensionless terms, this corresponds to the
condition (5.4), i.e. the lower bound on wa for the formation of cyclic steps.

Figure 10(a–c) suggests that the wavelength L approaches infinity as the lower limit
in wa is approached. That this is indeed true as long as γ > 1 is demonstrated below.
At the limiting value (5.4), (3.25) can be rewritten with (5.4) and (5.5) to yield

du

dx
=

(u2 − 1)γ

(u2
1 − 1)γ

(u3
1 − 1) + 1− u3

Fr2
t u− u−2

. (6.1)

Now let ∆x(ε) denote the distance from the point where u = 1 is realized, i.e. the
upstream boundary, to a point slightly downstream where u = 1 + ε, ε being a small
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positive number. Taylor-expanding and integrating (6.1), it is found that

∆x(ε) =
1

1− Fr2
t

∫ ε

0

1

3ε− Rεγ dε, R = 2γ
u3

1 − 1

(u2
1 − 1)γ

2γ. (6.2)

It is readily seen that ∆x(ε)→∞ as ε→ 0 under the constraint γ > 1.
The fact that L converges to infinity in the case of solitary steps renders several

of the previous definitions for cyclic steps meaningless for solitary steps. Since the
boundary condition (3.28a) is now satisfied as an asymptote infinitely far upstream, it
is appropriate to redefine the coordinate system in terms of the parameter xs defined
by (5.1), the origin of which corresponds to the point where Froude-critical conditions
are reached. That is, (3.28a) now becomes

lim
xs→−∞

u(xs) = 1. (6.3)

It is seen from figure 13 that step height ∆η is now given by

∆η = lim
xs→−∞

η(xs) = ∞. (6.4)

If the step height ∆ηs appropriate for solitary steps is defined as follows, however, the
limit is found to converge:

∆ηs = lim
xs→−∞

[η(xs) + xs]. (6.5)

The corresponding dimensional wave height is then ∆ηds = (qw/ut)∆ηd in accordance
with (3.27a). From (3.30a, b), (5.2) and (6.5), then,

Sr = lim
xs→−∞

η(xs)

Lf − xs = lim
xs→−∞

[η(xs) + xs]− xs
Lf − xs = 1. (6.6)

It follows from (3.8b) that the case of solitary steps corresponds to the condition

Frn = Fr t, (6.7)

as illustrated in the domain diagram of figure 9(a) for the case γ > 1.5. It is
furthermore seen from the above equation, (5.4) and (5.12) that

w = 0. (6.8)

That is, the negative value of wa perfectly compensates for the degradation inherent
in the translation of the waveform upstream at speed c, resulting in preservation of
form.

In figure 14(a–c) the parameters c, ∆ηs and ss are plotted against Fr t for the case
of solitary steps. Here ss is a steepness appropriate for solitary steps, defined as

ss =
η1 − Lf
Lf

. (6.9a)

In analogy to (5.10), this can be converted to an undistorted steepness ssd by means
of the relation

ssd = Stss. (6.9b)

Results in the figure are presented for both the cases γ = 1.5 and γ = 2. It is seen that
wave speed c, wave height ∆ηs and steepness ss all decrease with increasing Fr t. In the
case of the last two parameters, the decrease is sufficiently precipitous to necessitate
a logarithmic scale. As expected, the steps are progressively more well defined as Fr t
becomes small.
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Figure 14. (a) Dimensionless upstream wave speed of solitary steps c, (b) dimensionless wave height
of solitary steps ∆ηs, (c) dimensionless wave steepness of solitary steps ss, as functions of Fr t for
the cases γ = 1.5 and γ = 2.

In figure 15(a–c) profiles for solitary steps are plotted for the cases Fr t = 0.2, 0.4
and 0.6, respectively, with γ = 1.5. The associated parameters are given in table 3.
The plots have been constructed so as to show all of the step downstream of the
point where Froude-critical conditions are reached, as well as an upstream portion of
equal length. In analogy to (5.14), the distortion inherent in plotting η and ξ against
x is removed by plotting them against x̂s instead, where

x̂s =
xs + Lf

St
. (6.10)

This transformation places the origin of the coordinate system at the upstream end
of the reach that is actually plotted. Otherwise the plots conform to the conventions
of figure 11(a–i ). The tendency for ∆ηs and ss to increase as Fr t decreases is readily
apparent from the figure.

Table 3 also includes the results of calculations of solitary steps with γ = 2.0. It can
be seen there that an increase in γ from 1.5 to 2.0 results in a decrease in step height
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Figure 15. Bed (η, solid line) and water surface (ξ, dashed line) profiles of a solitary step for γ = 1.5
and the indicated value of Fr t. The dot on the bed denotes the point at which a Froude number of
unity is attained.

Fr t γ c (= wa) ∆ηs ss

0.2 1.5 0.864 29.97 303
0.2 2.0 2.375 5.06 438

0.4 1.5 0.705 4.65 21.5
0.4 2.0 1.091 1.54 30.7

0.6 1.5 0.542 1.255 4.66
0.6 2.0 0.536 0.532 6.22

Table 3. Some characteristic parameters of solitary steps for the cases Fr t = 0.2, 0.4, 0.6
and γ = 1.5, 2.0.

∆ηs and an increase in step sharpness ss. Wave speed c is increased for the Froude
numbers Fr t = 0.2 and 0.4, but is reduced in the case Fr t = 0.6.

In the present analysis the case describing solitary steps has been obtained as
a limiting case of cyclic steps each one of which is bounded by points where the
threshold velocity for bed erosion is attained. This constrains the solution to one that
attains a constant, uniform velocity equal to the threshold value for bed erosion over
a bed at the constant slope St far upstream. It is shown in Izumi & Parker (2000),
however, that solutions for solitary steps can be obtained under a much wider range
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of conditions, including those for which the flow velocity is either below or above the
threshold of erosion far upstream.

7. Conditions for the spontaneous development of steps
The above analysis of cyclic and solitary steps considers finite-amplitude solutions

of permanent form. It does not address the question as to whether or not a flow
able to erode a flat bed without steps will spontaneously devolve into a flow over
a stepped bed. An appropriate means for addressing this question is linear stability
analysis. To this end, the normal flow over a bed with slope S > St is considered.
The normal solution of (3.4) and (3.5) is then slightly perturbed to see if imposed
bed undulations will grow or die. The analysis below is in fact very similar to that
presented by Sawai (1977).

In dimensional terms, the flow velocity and bed profile are represented as

ud = und + upd, ηd = ηrd − Sxd − wndtd + ηpd. (7.1a, b)

Here und and wnd are given by (3.4b) and (3.5a), respectively; ηrd is a reference bed
elevation at the point (xd, td) = (0, 0) and upd and ηpd represent slight perturbations
about the normal state. Equations (7.1a, b) are now substituted into (2.1) and (2.3),
reduced with (2.2) and (3.3), Taylor-expanded to the linear level in the terms upd and
ηpd, and made dimensionless in accordance with the following scheme, which is similar
to (3.21) but based on und rather than ut:

upd = undup, ηpd =
qw

und
ηp, (7.2a, b)

xd =
qw

undSt
x, td =

α

(1− λp) qw
und

t. (7.2c, d)

The parameter x defined above is similar but not identical to that defined in (3.21d).
Rather than allow notation to proliferate, it is understood here that the above
definition is used in this section only. The resulting linearized versions of (2.1) and
(2.3) are

(Fr2
n − 1)

∂up

∂x
= −∂ηp

∂x
− 3up, (7.3)

∂ηp

∂t
= −Qup, Q = 2γu2

n(u
2
n − 1)γ−1. (7.4a, b)

Sinusoidal perturbations with wavenumber k and complex wave celerity cp made
dimensionless in accordance with (7.2) are introduced as follows:

ηp = η∗eik(x−cpt), up = u∗eik(x−cpt). (7.5a, b)

It is important to realize that the complex wave celerity cp differs from the upstream
wave speed c of the above analysis in several ways. The celerity cp is a dimensionless
quantity formed from the scales of (7.2) rather than (3.21). It is composed of a real
part cpr and an imaginary part cpi, where cpr corresponds to the wave speed and kcpi
corresponds to the growth rate of the perturbation. A positive value of cpr corresponds
to perturbations that migrate in the downstream direction. Substituting (7.5a, b) into
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(7.3) and (7.4) and reducing, it is found that

cpr = −3
Q

k2(Fr2
n − 1)2 + 9

, cpi = ik
(
Fr2

n − 1
) Q

k2(Fr2
n − 1)2 + 9

. (7.6a, b)

In so far as Q > 0 for any positive value of γ under the condition un > 1 con-
sidered here, the following results hold. The migration speed cpr is negative for all
wavenumbers k and normal Froude numbers Frn, corresponding to upstream mi-
gration. The growth rate kcpi of the perturbation, however, is seen to be positive only
when Frn > 1, i.e. when the normal flow is supercritical. That is, upstream-migrating
erosional forms that might evolve into cyclic steps form spontaneously only under
conditions of supercritical flow. The regime where the spontaneous formation of steps
might be expected is denoted in figure 9(a) for the case γ > 1.5. The above result does
not imply that cyclic steps (or their solitary limit) will not form for subcritical normal
flows. Rather, it implies that a finite-amplitude perturbation is probably necessary to
start their formation.

The infinitesimal bedforms predicted by the above stability analysis are such that
the water surface is approximately in phase with the bed under the condition that
Frn > 1. They are thus seen to correspond to the purely erosional analogue of anti-
dunes associated with sediment suspended over a non-cohesive bed. These antidunes
have been studied by such researchers as Kennedy (1963), Engelund (1970), and
Fredsoe (1974). None of these used the long-wave, or slender-flow approximation to
formulate the problem. Their work demonstrates that the Froude number for critical
flow conditions is in fact wavenumber dependent. For long waves, the Froude-
critical condition is indeed Fr = 1, but for shorter waves the critical condition drops
substantially below unity. It is for this reason that antidunes often form in flow that
is subcritical to long waves. The present analysis, then, applies only to long-wave
phenomena. Both short-wave erosional antidunes and cyclic steps may exist; the
present analysis sheds no light as to how the former forms and whether or not it
evolves into the latter.

8. Discussion
It is of value to compare the wave speeds and vertical degradation rates in the

presence of erosional steps with those in their absence. To this end the following
ratios are defined:

cr =
c

cn
, wr =

w

wn
, (8.1a, b)

where w is defined as

w ≡ (1− λp)wsd
α

. (8.2)

That is, cr and wr respectively denote the ratio of wave speed and total degradation
rate, with and without steps. Among (3.3), (3.8a), (3.9), (3.11), (3.15), (3.31) and the
definitions (3.24b) and (8.2) it is found that

wr =
(u2 − 1)γ

(u2
n − 1)γ

=
c
(
Frn/Fr t

)2
+ wa

[
(
Frn/Fr t

)4/3 − 1]γ
, cr =

c
(
Frn/Fr t

)2

[
(
Frn/Fr t

)4/3 − 1]γ
. (8.3a, b)

Values for wr and cr are shown in table 2. Of interest is the observation that either
of these parameters can be greater or less than unity. That is, the degradation or
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upstream migration rate in the presence of steps may be greater or less than the value
prevailing in the absence of steps, depending upon imposed conditions.

The fundamental nonlinearity of the erosion law (3.3) implies that any deviation
due to the presence of steps from the constant normal velocity un that would prevail
in the absence of steps should act to increase the reach-averaged erosion rate. Such
an increase is indeed observed for relatively large values of Fr t and relatively small
values of Frn, as can be seen from table 3. In the region where Fr t is small and Frn
is large, which also corresponds with the most well-developed steps, it is seen on the
other hand that the steps act to suppress the erosion rate rather than enhance it.

The reason for this is related to another fundamentally nonlinear phenomenon, the
hydraulic jump defining each step. To see this, (3.8a) and (3.31) are used to recast
(3.25) into the following form:

dEs
dx

= Sr +
(u2 − 1)γ − (u2 − 1)γ

c
− u3. (8.4)

Here Es denotes a dimensionless specific energy, given by the relation

Es = 1
2
Fr2

t u
2 + u−1. (8.5)

Integrating (8.4) from x = 0 to x = L under the constraints (3.28a, b) yields the
relation

u3 = Sr − ∆Es
L
, (8.6)

where ∆Es is a positive quantity that denotes the energy loss through the jump, given
by

∆Es = 1
2
Fr2

t

(
u2
con − 1

)
+
(
u−1
con − 1

)
, ucon =

[
(1 + 8Fr2

t )
1/2 − 1

2

]−1

. (8.7a, b)

Equation (8.6) can now be readily interpreted in terms of classical open channel
hydraulics. The parameter u3 is a dimensionless version of the mean friction slope,
and Sr likewise denotes a dimensionless mean bed slope. In the absence of steps, and
thus the associated hydraulic jumps, the mean friction slope would equal the mean
bed slope. In the presence of steps, however, u3 must drop below Sr by an amount
corresponding to the energy loss per unit distance associated with each hydraulic
jump. As Fr t becomes small the intensity of the hydraulic jump increases, causing
∆Es to increase. It was likewise seen earlier that L approaches 0 as Frn becomes large.
Thus small values of Fr t and large values of Frn imply decreased values of u3, and
thus a decreased rate of erosion of the bed in the presence of steps.

The above comments are not meant to imply that the hydraulic jump plays no role
in the erosion process. The boundary condition (3.28a) is based on the assumption
that erosion at the base of the step continues as cyclic steps develop until the threshold
condition is attained. Cyclic steps of permanent form are thus assumed to be the end
product of this development process.

The conclusion that the average erosion rate in the presence of steps is lower that
in their absence when Fr t is small and Frn is large may have some useful practical
implications as regards erosion control.

The issue of the boundary condition (3.28a) deserves more attention. A reanalysis
of the problem indicates that the boundary condition

u|x=0 = us, 1 < us < min (Fr
−2/3
t , un) (8.8)
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also results in solutions for cyclic steps. The upper bounds result from the following
considerations. A Froude number Fr s may be defined such that

Fr2
s = u3

sFr2
t . (8.9)

Two necessary conditions for the formation of cyclic steps are that Fr s < 1 and
Fr s < Frn. This can be seen by substituting Fr s for Fr t in figure 9(a). One of these
conditions combined with (8.9) results in the first bound in (8.8); the other combined
with (3.8a) results in the second one.

It is suggested here that solutions for cyclic steps satisfying (8.8) may represent an
unstable finite-amplitude equilibrium. That is, any small perturbation would result in
the initiation of scour at the toe of each step, which would then only be completely
stabilized when the threshold condition for bed erosion is attained just beyond the
hydraulic jump, i.e. when (3.28a) is satisfied. A proper resolution of this question would
require a full nonlinear stability analysis. This technique has provided extremely useful
results as regards other erodible-bed problems (e.g. Colombini, Seminara & Tubino
1987; Schielen, Doelman & Swaart 1993). It is, however, beyond the scope of the
present analysis.

As pointed out in the introduction, cyclic steps need not be purely erosional.
Winterwerp et al. (1992) have observed virtually the same phenomenon in non-
cohesive fine sediment under conditions for which there is no net erosion of the
bed; these are here termed transportational cyclic steps. These are probably different
manifestations of the same underlying mechanism. In addition, it may be that the
step–pool topography characteristic of steep gravel-bed streams (e.g. Whittaker &
Jaeggi 1982; Ashida, Egashira & Nishimoto 1986; Grant & Mizuyama 1991) is a
somewhat more distantly related phenomenon.

A final point concerns the long-wave approximation. The calculations presented
here show that wavelength L converges to 0 as Frn approaches infinity. The long-
wave approximation ceases to hold in this limit; the results are nevertheless shown
in order to show the general behaviour of the theory. The present theory does not
apply whenever the predicted ratio of characteristic depth to wavelength ceases to be
small.

9. Finite-slope generalization
While the forms (2.1)–(2.3) can be expected to be accurate as long as the bed slope

is not too high, their application to cases for which the slope angle exceeds more
than a few degrees becomes suspect. Consider, for example, the case corresponding to
γ = 1.5, Fr t = 0.2 and Frn = 1.191 of table 2, for which the step steepness s defined in
(5.9) is 313. Between (3.7a) and (5.10) it is found that the average bed slope sd from
the Froude-critical point to just before the hydraulic jump and the corresponding
slope angle θf are given by the relations

sd = CfFr2
t s, θf = tan−1(sd). (9.1a, b)

In the case of a friction coefficient Cf of 0.001, it is found that θf is equal to 0.72◦, a
value low enough to justify the neglect of geometric nonlinearities. When Cf = 0.05,
however, the value of θf increases to 32.0◦, a value at which such nonlinearities can
be expected to be important.

With this in mind, the forms (2.1) and (2.3) appropriate for an infinitesimal-slope
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analysis are generalized below to their finite-slope forms:

∂u2
dhd

∂sd
= ghd sin θ − 1

2
g
∂

∂sd
h2
d cos θ − τb

ρ
, (9.2)

cos θ(1− λp)∂ηd
∂td

= −E, (9.3)

where sd denotes a boundary-attached downslope streamwise coordinate tangent to
the bed, hd now denotes depth normal to the bed and xd, sd, ηd and bed angle θ are
related as

∂xd

∂sd
= cos θ,

∂ηd

∂sd
= − sin θ. (9.4a, b)

As long as the bed curvature is not too large the following approximation is accurate:

1

2

∂

∂sd
h2
d cos θ = hd cos θ

∂hd

∂sd
− 1

2
h2
d sin θ

∂θ

∂sd
≈ hd cos θ

∂hd

∂sd
. (9.5)

Equations (9.2) and (9.3) are now reduced with (2.2), (2.4), (9.4), (9.5) and (3.12)
and rendered dimensionless in accordance with (3.21) and (3.24), with the exceptions
that (3.21d ) and (3.24a) are generalized to the respective forms

xd =
qw

ut sin θt
x, c = (1− λp) sin θt

csd

α
. (9.6a, b)

In the above relations the angle θt corresponding to the threshold for erosion at
normal conditions is given by the finite-slope generalization of (3.7a):

sin θt = CfFr2
t . (9.7)

This results in the following finite-slope generalizations of (3.23) and (3.25), respec-
tively:

c
sin θ

sin θt
+ wa cos θ = (u2 − 1)γ, (9.8)

du

dx
=

sin θ/sin θt − u3

(Fr2
t u− u−2 cos θ) cos θ

. (9.9)

A consideration of Froude-critical conditions leads to the following generalizations
of (4.2) and (4.3):

u1 = Fr
−2/3
t cos1/3 θ1, tan θ1 = Cf, (9.10a, b)

c =

(
u2

1 − 1
)γ − wa cos θ1

u3
1

, (9.11)

where θ1 denotes the bed slope angle at the Froude-critical point. The finite-slope
generalizations of (3.4a), (3.31), (4.5), (5.3) and (5.4) are found to be

sin θn = CfFr2
n, tan θn = S, (9.12a, b)

wa =

[
(u2 − 1)γ

cos θ

]
− c

cos θn

Fr2
n

Fr2
t

, (9.13)
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du

dx

∣∣∣∣
x1

= u5
1

{
2
3
γ[u2

1(u
2
1 − 1)γ−1 cos θ1]/[(u

2
1 − 1)γ cos θ1 − wa]− 1

}{
cos2 θ1 + [u2

1(u
2
1 − 1)γ−1 cos θ1]/[(u

2
1 − 1)γ cos θ1 − wa]u8

1 sin2 θt
} , (9.14)

wau =
(u2

1 − 1)γ

cos θ1

, (9.15)

and

wal = − (u2
1 − 1)γ

u3
1 cos θul − 1

, (9.16a)

where

cos θul =
[
1− sin2 θt

]1/2
. (9.16b)

In the above relations θn denotes the angle of the imposed bed slope S and θul denotes
the bed angle at x = 0 (and u = 1) in the limit as w → wal . Finally, the relation
(3.28b) for conjugate velocity just upstream of the hydraulic jump is replaced with
the imposition of the condition

M(u) = 0 at x = L, (9.17a)

where

M(u) = u−3 cos θ − u−1(cos θu + 2Fr2
t ) + 2Fr2

t = 0, (9.17b)

and θu denotes the bed angle at x = 0, given by

tan θu = −wa
c

sin θt. (9.17c)

It can easily be shown that all of the above finite-slope generalizations reduce to
the corresponding previously introduced infinitesimal-slope forms in the limit of small
angle. In the case of the infinitesimal-slope theory, however, the friction coefficient
Cf could be absorbed into the streamwise coordinate in accordance with (3.21d ) and
(3.7a), allowing for a universal formulation independent of Cf . This is no longer
possible in the case of the finite-slope formulation, as can be seen, for example, from
(9.10b).

The numerical solution can be implemented in the same way as that for the case
of negligible slope. In order to facilitate this it is useful to solve (9.8) for bed slope:

tan θ = sin θt
(u2 − 1)γ

{
1 + sin2 θt[w

2
a − (u2 − 1)2γ]/c2

}1/2 − wa
c
[
1− sin2 θt(u2 − 1)2γ/c2

] . (9.18)

It can be seen that (9.18) is the generalization of (3.23).
The most important result of the finite-slope analysis is not the forms of the steps

themselves, which prove to be relatively insensitive to geometric nonlinearities. It is
rather in the delineation of a friction coefficient Cf beyond which the present analysis
breaks down. In particular the bed attains infinite slope wherever flow velocity
becomes so high that the denominator of (9.18) vanishes. (The equation also becomes
invalid when the argument inside the surd becomes negative, but this requires a higher
velocity than the one which causes the denominator to vanish). If the denominator
of (9.18) vanishes at a velocity u that is lower than the one which causes the function
M of (9.17b) to vanish, bed slope becomes infinite upstream of the point where the
velocity would be high enough to enable the hydraulic jump that allows a cyclic
solution.

The critical condition for the existence of cyclic solutions is thus one for which the
value of u causing the denominator to vanish (and thus tan θ to become infinite) is
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Figure 16. Plot of the upper bound Cfu on the friction coefficient for the existence of solutions for
cyclic steps as a function of Fr t and λw = (wa − wal)/(wau − wal), for the case γ = 1.5.

equal to the value of u that causes M to vanish. From (9.18), (9.7) and (9.11) this can
be reduced to the following upper bound Cfu on the friction coefficient Cf:

Cfu =
(u2

1 − 1)γ − wa cos θ1

cos θ1(u2
c − 1)γ

, (9.19)

where uc is the conjugate velocity obtained from (9.17b) at an angle θ of 90◦:

uc =
2Fr2

t + cos θu

2Fr2
t

. (9.20)

For any specified values of Fr t and wa the limit Cfu can be easily found by simple
successive approximation from (9.19) with the aid of (9.20), (9.7), (9.10), (9.11) and
(9.17c).

The limit Cfu was computed over the range defined by Fr t ∈ [0.2, 0.8] and wa ∈
(wal, wau) for the case γ = 1.5. It is worth mentioning that the values of wal and wau
predicted by the finite-slope relations varied no more than 4% from the corresponding
values from the theory for infinitesimal slope. Figure 16 shows Cfu as a function of
Fr t and λw , where

λw =
wa − wal
wau − wal , (9.21)

and the values of wau and wal are those of the theory for infinitesimal slope. Note
that λw is defined so that it equals zero when wa = wal and unity when wa = wau.

For a large threshold Froude number Fr t of 0.8 and a small value of λw of 0.05
it is found that Cfu is as large as 0.167, indicating an extremely broad range over
which cyclic steps can form. At opposing limit of Fr t = 0.2 and λw = 0.95, Cfu is as
small as 0.00044, indicating that solutions for cyclic steps can be obtained only for
unrealistically smooth surfaces.
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Fr t wa Cfu Cf (Frn)f/(Frn)i (c)f/(c)i (∆η)f/(∆η)i (L)f/(L)i

0.2 −0.6 0.00875 0.001 1.0012 1.0000 1.0025 1.0000
0.2 −0.6 0.00875 0.0085 1.0237 1.0000 1.0456 0.9976

0.4 0 0.0577 0.005 1.0005 1.0000 1.0011 1.0000
0.4 0 0.0577 0.04 1.0207 0.9997 1.0401 0.9968

0.6 0.5 0.0455 0.005 1.0006 1.0000 1.0011 0.9998
0.6 0.5 0.0455 0.04 1.0970 0.9983 1.2227 1.0136

Table 4. Ratio of value predicted by the finite-slope formulation to that predicted by the in-
finitesimal-slope formulation for several of the parameters of the cases of table 2. Also listed is
the resistance coefficient used in the calculation and the upper limit for resistance coefficient. The
exponent γ is equal to 1.5.

(θmax)i (θmax)f
Fr t wa Cfu Cf (deg.) (deg.)

0.2 −0.6 0.00875 0.001 6.4 6.5
0.2 −0.6 0.00875 0.0085 35.4 71.8

0.4 0 0.05772 0.005 4.2 4.2
0.4 0 0.05772 0.04 30.5 37.8

0.6 0.5 0.04548 0.005 3.3 3.3
0.6 0.5 0.04548 0.04 24.9 32.2

Table 5. Maximum angle of inclination predicted by the finite-slope and infinitesimal slope
formulations for the cases of table 4. The exponent γ is equal to 1.5.

Several of the cases explored with the infinitesimal-slope theory and presented in
tables 3 are revisited in tables 4 and 5 using the finite-slope theory. In table 4 the four
dimensionless parameters Frn, c, L and ∆η are revisited for the case γ = 1.5. For each
specified pair (Fr t, wa) the ratio of the value of each of these four parameters predicted
by the finite-amplitude theory for a specified value of Cf to the value predicted by
the infinitesimal-amplitude theory is compared. Two cases are considered for each
pair (Fr t, wa), one for which Cf is well below Cfu and another for which Cf is near
Cfu. It is seen from the table that the predictions of the infinitesimal-slope theory are
surprisingly accurate until Cf becomes very close to Cfu.

This conclusion is confirmed in table 5, in which the predictions for the maximum
bed angle θmax, attained just before the hydraulic jump, for the finite-slope formulation
are compared with the corresponding predictions for the infinitesimal-slope formula-
tion. The agreement is all the more remarkable in that θmax is likely to be the parameter
most poorly described by the infinitesimal-slope theory. The infinitesimal-slope theory
performs poorly in terms of θmax only in the case (Fr t, wa, Cf) = (0.2,−0.6, 0.0085);
the value of Cf in this case is very close to the upper limit Cfu of 0.00875.

A comparison of the bed profiles predicted by the finite-slope and infinitesimal-
slope theories is presented in figure 17 for the case (γ,Fr t, wa, Cf) = (1.5, 0.6, 0.5, 0.04)
of tables 4 and 5. The value for Cfu in this case is 0.0455. The plot is given in terms of

x̂s =
xs

sin θt
(9.22)

rather than x̂ = x/ sin θt so as to ensure that the Froude-critical point is reached at
the same point, i.e. x̂s = 0 in both plots. Again the agreement is seen to be very close
except in a short zone of very steep bed just before the hydraulic jump.
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Figure 17. Plot of the dimensionless bed profile predicted by the infinitesimal-slope theory
of the case (Fr t, wa) = (0.6, 0.5) with that predicted by the finite-slope theory for the case
(Fr t, wa, Cf) = (0.6, 0.5, 0.04), for γ = 1.5. The associated upper bound Cfu in this case is 0.0455. The
Froude-critical point occurs at x̂s = 0.

Several of the equations presented previously for the infinitesimal-slope case must
be modified for the finite-slope case. Rather than reintroduce them, the required
changes are indicated here. In (3.5a), (3.5b) and (3.9) the right-hand side must be
divided by cos θn. In (3.8) and (3.9) Sr must be replaced by sin θn/ sin θt. In (3.10),
(3.11), (5.10) and (5.14) St must be replaced with sin θt. In (5.12) c must be replaced
with c/ cos θn. The generalizations to (5.13a) and (5.13b) are

ξd = ηd +
hd

cos θ
= ηd +

qw

ud cos θ
, (9.23a)

ξ =
ut

qw
ξd = η + (u cos θ)−1 . (9.23b)

10. Comparison with data and sample calculation
Although a variety of experimental and field research on headcut formation in

cohesive material has been performed, including the work of Holland & Pickup
(1976), Gardner (1983) and Stein & Julien (1993), none lends itself to a direct test of
the validity of the above theory. This is due to the lack of an empirically determined
form of the erosion relation (3.1) for the material in question. In addition, the
research of Gardner (1983) and Stein & Julien (1993) pertains to single steps. That of
Holland & Pickup (1993) pertains to multiple steps, but their location is determined
by an imposed vertical variation in erodibility. The only experimental work that
demonstrates the existence of purely erosional cyclic steps is due to Sawai (1977) and
Koyama & Ikeda (1998). Here again, though, the data are not sufficient to allow a
general determination of a form for the erosion relation.

This notwithstanding, several reasonable assumptions can be made so as to apply
the present theory to the experiments of Sawai (1977). An erosional relation of the
form of (3.1) is assumed, in which γ is taken to be 2. In addition, the value of ut
in (3.2) is taken to be 7 cm s−1. Sawai reports that in one of the experiments, before
steps formed a flow depth of 4.5 mm was realized for a water discharge per unit
width of 30 cm2 s−1 on a slope of 26◦. The friction coefficient Cf for this case can thus
be estimated as 0.043. Though the friction coefficient can be expected to be a weak
function of flow depth and roughness height and therefore should differ for each run,
the above-quoted value is used for all runs for lack of better information. In table 6
observed values of dimensional step length Ld are compared against computed ones.
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Discharge per Observed Predicted
unit width, qw wavelength, wavelength,

Run sin θn (cm2 s−1) Frt Frn Ld(cm) Ld(cm) wa

1 0.225 3.85 0.302 2.29 8.9 2.93 10.7
2 0.225 7.50 0.216 2.29 6.3 13.4 23.1
3 0.225 9.09 0.196 2.29 5.5 20.3 28.0
4 0.438 2.22 0.397 3.19 3.6 0.335 5.31
5 0.438 3.85 0.302 3.19 4.4 1.35 13.0
6 0.438 5.88 0.244 3.19 4.7 3.61 23.5
8 0.707 2.50 0.374 4.05 4.2 0.273 6.84
9 0.707 4.17 0.290 4.05 2.6 0.965 15.8

10 0.545 7.69 0.213 3.56 6.3 5.15 35.5
11 0.555 13.3 0.162 3.59 15 16.4 68.7
12 0.196 6.67 0.229 2.13 14 12.2 18.6

Table 6. Results of an application of the present theory to the experiments of Sawai (1977).
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Figure 18. Values of Ld predicted by the theory plotted against the values observed in the
experiments of Sawai (1977).

All cases of table 1 are included in the calculation except for Run 7, for which Ld
was not measured. In the calculations, in lieu of better information the discharge
per unit width was approximated as the discharge divided by the water surface
width. A comparison between observed and predicted step wavelength is shown in
figure 18. Because the predicted wavelength is a sensitive function of ut, which is in
turn strongly influenced by several vagaries associated with cohesive soil including
water content, time of drying, ionic content of pure water etc., the comparison must
be considered approximate at best. This notwithstanding, the agreement between
observed and predicted values of step length Ld is acceptable in the light of the
above-noted limitations.

In order to illustrate the application of the theory a sample calculation is presented
here for the case (γ,Fr t, wa, Cf) = (1.5, 0.6,−0.3, 0.04). The value of Cfu in this case is
0.123, a value that is in the present case sufficiently large compared to Cf to render the
predictions of the infinitesimal-slope theory highly accurate. This notwithstanding, all
calculations were performed using the finite-slope theory. The predicted values of the
dimensionless normal Froude number Frn, wave speed c, wavelength L, wave height
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Figure 19. Dimensional plot of cyclic steps for the case (γ,Fr t, wa, Cf) = (1.5, 0.6,−0.3, 0.04) and
ut = 1.5 m s−1. The dots denote the Froude-critical points.

∆η, step sharpness s, angle of average bed slope between the Froude-critical point
and the hydraulic jump θf and maximum bed angle θmax were found to be 0.994,
0.455, 0.418, 1.15, 6.43, 5.3◦ and 11.4◦, respectively. The critical bed slope St = tan θt
and normal bed slope S = tan θn are found to be 0.0144 and 0.0395, respectively.

In order to explore the implications of the theory at field scale, it is assumed that
the threshold velocity for bed erosion ut is 1.5 m s−1. With the aid of (2.2) and (3.7b)
this yields a value of 0.956 m2 s−1 for qw and a value of 0.637 m for ht. Dimensional
step length Ld is thus found from (9.6a) to be 18.5 m. Dimensional step height ∆ηd is
found from (3.21b) to be 0.731 m. Two wavelengths of bed and water surface elevation
profiles are plotted in dimensional form in figure 19.

Further calculations require a value for the coefficient α in the erosion relation (3.3).
Here this is done by imposing a vertical erosion rate wnd in the absence of steps of
1 mm h−1. It is seen from (3.6) that this corresponds to a wave speed cnd of 25.3 mm h−1.
Assuming the porosity λp to be equal to 0.3, α can be back-calculated from the finite-
slope generalization of (3.5a) to yield a value of 0.0745 mm h−1. The predicted values
of csd and wsd are thus found from (5.11), the finite-slope generalization of (5.12)
and (9.6b) to be 33.6 mm h−1 and 1.01 mm h−1, respectively. Note that in this case the
wave speed is noticeably elevated, and the degradation rate slightly elevated in the
presence of steps.

11. Conclusion
A complete theory is presented for purely erosive one-dimensional cyclic, or periodic

steps in cohesive material of uniform erodibility. These features are trains of headcuts
which degrade and migrate upstream at constant rates, preserving their form as they
do so. Each step is characterized by an upstream region of subcritical flow and a
downstream region of supercritical flow ending in a hydraulic jump. As step sharpness
increases, the relative length of the zone of subcritical flow increases at the expense
of that of supercritical flow.

Once the friction coefficient and the parameters of the erosion relation are specified,
the theory allows the prediction of all relevant parameters, including wavelength, wave
height, wave speed, degradation rate, and bed and water surface profiles. In addition
to the exponent γ of the erosion relation, the two most important dimensionless
parameters governing the phenomenon are the Froude numbers Fr t and Frn associated
with flow velocity at the threshold of motion and normal flow velocity in the absence
of steps, respectively. Step sharpness increases as Fr t decreases and Frn increases.

Erosional steps are related to the erosional version of the antidune mechanism.
A linear stability analysis of this mechanism suggests that a necessary condition for
the spontaneous formation of steps is that Fr t > 1, i.e. that the normal flow in the
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absence of steps be supercritical. Steps can still exist for subcritical values of Frn as
long as Fr t < Frn. In this range, however, a finite-amplitude perturbation is necessary
to trigger them. The case of a solitary step is obtained in the limit as Frn → Fr t. This
form, which has infinite wavelength, is also self-preserving as it migrates upstream.

A consideration of geometric nonlinearities leads to the specification of an upper
limit to the resistance coefficient beyond which the theory breaks down. The the-
ory fails at this limit because the bed slope becomes infinite just upstream of the
hydraulic jump. An infinitesimal-slope theory that neglects geometric nonlinearities,
however, performs quite well up to values of the resistance coefficient that are not far
below the limit value. The fact that the present theory breaks down for sufficiently
large resistance coefficient may not mean that cyclic steps cannot form under such
conditions. It may instead mean that a bed shock in the form of a waterfall needs to
be included in the analysis. This observation suggests a further research topic.

The research presented here on purely erosional cyclic steps, combined with the
recognition of an analogous transportational form in fine non-cohesive material (e.g.
Winterwerp et al.1992) suggests an underlying similarity between the two phenomena.
The pursuit of a unified theory of cyclic steps promises to be an exciting research
topic for the future.
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